Konyak Orthography 
Morphology
Prev
Home
Next

2.2.5.7.Sociative Case

       Sociative is the `in association of/with', it may be animate or inanimate.  It's marker is phƏy.

       ya  ƏphƏy ha?lak                         `she will eat with me'

       1     2    3       4                          

       `I went to the school with the books'

       1     5                 2        4              3

       áŋmiŋƏ yaphƏy tay                      `Angmung went with her'

           1        2     3     4                           1           4        3     2

       henloŋƏ ya yaphƏy tay                 `Henlong took her with her

           1        2    3     4     5                     1          5     2     4     3

2.2.6.      Numeral system    

       Numeral constitute a sub-class of Nouns as they function as noun attributes.

       The Konyak numeral system is vigesimal in its structure.  The counting is based on the basic numeral for `twenty' ta (instead of ten' as in decimal system).

2.2.6.1.     Cordinal Numerals

       The basic cordinal number terms which are monomorphemic are the following:-

                    `one'                 ñit           `seven'

       ñí              `two'                tat           `eight'

                     `two'                tu            `nine'

       lm             `three'              pƏn         `ten'

       pilí             `four'                ta            `twenty'

       ŋa             `five'                kh*         `hundred'

       wók           `six'

       Among these terms except khò-, all others are free forms, while khò- is bound.  It requires one of the numerals from 1 to 9 for its occurrence.

       The numeral `two' has allomorphs, ñí and yí.  While  ñí occurs only as the last member of the numeral construction (eg. panƏñí `12'); y occurs as the middle or the penultimate member in a numeral construction. (eg. tiyícà `40'; tycpn `50').  Also it is used mainly in counting numbers than elsewhere.  That is, it is not used with a noun head, eg.

       Ka?tañí                                                      `two men'

       *ka?tay

       nòkñí                                                         `two houses' etc.

       *nòkyí

       There are no native terms for higher numbers like thousand, lakh, etc. For these numbers, the corresponding :ng terms are borrowed from Assamese, eg.

       hacà                                           `thousand'             (hacàcà `one thousand')

       lak-           `lakh'                         (lakcà `one lakh')

1.    Numerals from 11 to 19 (teens) are obtained by adding 1 to 9 to the numeral `ten' `pƏn'.

       pan ten + cà `one' → pƏn mƏcà `eleven'

       When added so, a bound element me~mƏ is added between them.  Elsewhere me~mƏ is a locative case marker.

Similarly –

          pƏn    - ñí       `two'           pƏnmƏñí      `twelve'

          pƏn    - ŋa `    `five'           pƏnmƏŋa     `fifteen'

          pƏn    - wòk   `six'            pƏnmƏwók   `sixteen'

          pƏ   - tu       `nine'          pƏnmƏtu      `nineteen', etc.

2.    Decades are obtained in two ways:-

       The `even' decades like 20, 40, 60 are obtained by multiplication of `twenty' with the respective basic numerals 2,3 and 4.

       20    x        2              40

       ta     x        yi             tiyícà

       20    x        3              60

       ta     x       lim           tilimcà

       20    x        4              80

       ta     x        pilí           tippƏlícà

       In all the above three tens, it can be noted that at the end of these forms cà is used.  It is an opligatory item.  It seems to demarcate and state that the preceding elements belong to one unit.  And the relation between the members is of multiplication.  This becomes obvious when we notice in `odd' tens by adding `ten' after cà `one' to the `even' tens, we get the respective `odd tens'.  That means whatever occurs after cà, and precedes cà have the relation of addition, and nothing else.

       20 x 2 → 40 + 10 = 50 or [[(2) (2)m 10 Ad.]]

eg.- ta x yi + pƏn → tiyícàpƏn

       20 x 3 60 + 10 = 70

ta x lm + pƏn → `tilim càpƏn'

       20 x 4 → 80 + 10 = 90

ta x pili + pƏn → tippƏlÍ càpƏn

       But for `thirty', it is tapn `30'.  Here, it is the case of addition and not of multiplication.  Still here c is not used.

3.    Numerals from 21 to 99 except decade, are obtained by adding the basic numerals from 1 to 9 to the decades.  In this process a bound element phy me* is added between them, eg.

       ta `20' + cà `l' →      taphƏymƏcà `21'

       ta `20' + lim `3' →    taphƏy malim `23'

       tiyíc `40' + ŋa `5' → tippƏlícàpƏn `40'

       tippalícàpƏn `90' + ñit `7' → tippƏlí càpƏn phƏyƏñit `97'

       tilímcàpn `70' + tat `8' → tilímcàpƏn phƏymƏtat `78'

       tilímcà `60' + tu `9' → tilím càpƏn `69' etc.

4. Centuries are obtained by suffixing basic numerals 1 to 9 to kho - `hundred'.  The resultant form is a free form.

       khò – cà `one'      khòcà          `one hundred'

       ñyí     `two'          khòñí           `two hundred'

       ŋa      `five'          khòŋa          `five hundred'

       wók   `six'            khòñwók      `six hundred'   

* phym is a postpositional (adverbial) marker.  It also  conveys sense of `after' `with' etc.

       Further higher numbers are obtained by forming numeral constructions in the above way.  All the numeral constructions upto hundred constitute `words', and the higher constructions constitute `phrases'.  For instance – khòcà pƏnmƏñí `one hundred twelve'.

       Here this construction a phrase – consists of two constituents –khòcà `one hundred' and pƏnmƏñí `twelve'.

       Higher denominations come to the left (of writing), as seen above.  Similarly-

       khòñítiyí cápƏn phƏymƏlim

          1      2          3             4

       `two hundred fifty three'

          2       1         3        4

hacàcà khòtu tippƏlícàpƏn phƏymƏtat

          1   2      3   4          5                 6

       `one thousand nine undred ninty nine'

           2          1        4       3          5      6

       hacà  ñí khò ñí  tiyí  càpƏn

          1    2    3    4         5

       `two thousand two hundred fifty'

          2           1       4         3         5

       lakcà hacàpƏnmƏpilí khòŋa tapƏn

           1 2      3         4        5    6      7

       `one lakh fourteen thousand five hundred thirty'

          2     1         4            3         6         5           7

       and so on.

       So far cardinal numerals were dealt with.  There are a few other types of numerals also.  They are discussed below.

2.2.6.2.     Ordinal numerals:

       Ordinal numerals are obtained by suffixing ordinal marker sepu(pa) to the cardinal numerals from `second onwards'.

       For `first' a separate form is used: Əwaŋ(pa.)

        ñí sepu (pa)             `second'

       lím sepu (pa)            `third'

       ñí sepupa ka?ta        `second person'

       Əwaŋpatoy               `first thing'

       Əwaŋ pañoy             `first place'

2.2.6.3.       Multiplicative numerals:

       Multiplicative numerals are obtained by suffixing multiplicative marker me to the cardinal numerals, eg.-

        ñí+ me → ñíme                 `twice'

       lím + me → limme             `thrice'

       pilí + me → pilíme              `four times, etc.