BACK
HOME
NEXT


APPENDIX I


A) Computation of Pearson Product-Moment Correlation Coefficient
The scores obtained by a group of 10 children on two tests, viz.,  spelling and comprehension are given below :

 

Name

Spelling Test (X)

Comprehension test (Y)

Shanti

31

7

Elango

28

18

Ponnaruvi

38

12

Mangaiyar

22

6

Janaki

24

8

Mahendra

26

5

Nagajothi

31

14

Arungalai

31

10

Arumbu

37

13

Meena

30

17

 

Name

X

Y

x

y

x2

y2

xy

1

31

7

+1

-4

1

16

4

2

28

18

-2

+7

4

49

-14

3

38

12

+8

+1

64

1

8

4

22

6

-8

-5

64

25

40

5

24

8

-6

-3

36

9

18

6

26

5

-4

-6

16

36

24

7

31

14

+1

+3

1

9

3

8

33

10

+3

-1

9

1

-3

9

37

13

+7

+2

49

4

14

10

30

17

0

+6

0

36

0

å

M

300

30

110

11

0

0

244

186

86

σx        =          244/10             =          24.40   =          4.94
σy        =          186/10             =          18.60   =          4.31

                                                åxy                                     86                                                 86

                rxy          =              ------------   =           ------------------------                =              ------------    =       .40

                                                N σx σy            (10)(4.94)(4.31)                          212.91

 \          The Pearson product-moment correlation coefficient is

                                    i.e.,       rxy        =          0.40

 B) Computation of Rank Order Correlation Coefficient
Two tests were administered to a group of 12 teacher-trainees.  The scores obtained by them are given below :

Name

Maximum 40

Maximum 40

 

  1. Rajagopal
  2. Sheshadri
  3. Kapilcharan Panda
  4. G. Mudali
  5. Kesar Ram
  6. Sukumaran
  7. Somashekara
  8. Hanumanthappa
  9. Sarat Kumar Das
  10. Purendra Singha
  11. Sannamalladevaru
  12. Venkataram Narasiah

 

 

40

39

38

37

36

35

34

32

31

30

29

27

 

38

40

35

37

39

31

28

34

27

30

33

29

 Subsequently the scores obtained by them in both the tests are correlated by using the Rank order Correlation Method.

Name

Ranks obtained

Difference

(D)

 

D2

Test-I

Test-II

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

3

1

5

4

2

8

11

6

12

9

7

10

2

1

2

0

3

2

4

2

3

1

4

2

4

1

4

0

9

4

16

4

9

1

16

4

 

ådi2 = 72

   The correlation between the ranks of the trainees is calculated through the following formula :

 P          =          1   -       6ådi2___
                                        n-(n2-1)

                        =          1  -     6  x  72__   =   1  -   432__      =    1716  -  432

                                            12 (144-1)                  1716                    1716

                         =             1284_     =    0.74825    =   0.75

                                       1716
From the value obtained (P), it can be interpreted that the correlation of ranks between the two tests are appreciable.